Two-dimensional Birkhoff's theorem

Matěj Dostál

Czech Technical University in Prague Faculty of Electrical Engineering Department of Mathematics

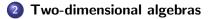
13/2/2016

イロト イヨト イヨト イヨト

æ

Outline

1 Ordinary Birkhoff's theorem



・ロン ・聞と ・ほと ・ほと

æ

Universal algebra

- Universal algebra is the study of algebraic structures. (Birkhoff, 1935)
- Algebras in "ordinary" universal algebra are sets equipped with operations satisfying some axioms (identities).

Example — monoids

A monoid (M, *, e) is a set M together with a binary operation * and a nullary operation e, satisfying the identities

$$(x * y) * z = x * (y * z),$$

 $e * x = x * e = x.$

Ordinary Birkhoff's theorem

Commutative monoids

The inclusion CommMon \hookrightarrow Mon is given by the additional identity x * y = y * x.

Equational subcategories of $\operatorname{Alg}(\mathcal{T})$

Let $Alg(\mathcal{T})$ denote algebras for a theory \mathcal{T} .

$$\mathcal{A} \longrightarrow \operatorname{Alg}(\mathcal{T})$$

Every equational subcategory \mathcal{A} of $Alg(\mathcal{T})$ is closed in $Alg(\mathcal{T})$ under products, subalgebras, and quotient algebras (HSP).

Birkhoff's HSP theorem

The converse of the above proposition is true; we can detect equational subcategories by their closure properties. Matěj Dostál 4/14

Usage of Birkhoff's theorem

$\mathcal{A} = \textbf{Modular lattices}$

Lattices satisfying the implication

$$x \le b$$
 implies $x \lor (a \land b) = (x \lor a) \land b$

closed under H, S and P: axiomatisable by identities.

$\mathcal{A} =$ Integral domains

Nonzero commutative rings satisfying

$$x * y = 0$$
 implies $x = 0$ or $y = 0$

- 4 同 6 4 日 6 4 日 6

not closed under HSP: cannot be axiomatised by identities.

Categories with structure

There are important examples of categories equipped with algebraic structure. Basic example: (Set, \times , 1).

[2,0]-categories

A [2,0]-category is a category C together with a functorial binary operation \otimes that is associative up to natural isomorphism

$$\alpha_{ABC}: (A \otimes B) \otimes C \xrightarrow{\cong} A \otimes (B \otimes C),$$

and a unit I that is an identity for \otimes up to natural isomorphisms.

・ 同 ト ・ ヨ ト ・ ヨ ト

Categorical universal algebra

- Categorical universal algebra employs category theory in the study of algebra.
- Basic notion on the level of syntax: algebraic theory. (Lawvere, 1963)

Algebraic theory

A theory is a small category \mathcal{T} equipped with some limit structure (e.g. finite products). Corresponds to abstract clones in UA.

Algebra for a theory ${\mathcal T}$

A \mathcal{T} -algebra is a functor $\mathcal{T} \to \text{Set}$ that preserves the limit structure of \mathcal{T} . Natural transformations correspond to homomorphisms between \mathcal{T} -algebras. The category of all \mathcal{T} -algebras is denoted by $Alg(\mathcal{T})$.

Many-sorted algebras

- Slight generalisation: many-sorted algebras. (Birkhoff, 1970)
- Algebras have an underlying set for each specified sort, the operations are sorted.

Example – directed graphs

A directed graph (E, V, s, t) is a set E of the edge sort, a set V of the vertex sort, and two unary operations

$$s: E \to V,$$

 $t: E \to V,$

representing the source and target maps.

Examples of algebraic theories

Directed graphs — empty limit structure

Contains only unary operations: no need for products.

Monoids — finite product structure

$$g \times g \xrightarrow{*} g \qquad \qquad G \times G \xrightarrow{*} G$$

イロト イポト イヨト イヨト

All the derived operations are present in the theory.

Categories with structure

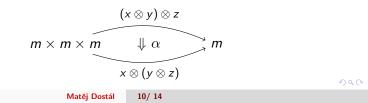
There are important examples of categories equipped with algebraic structure. Recall: (Set, \times , 1).

[2,0]-categories

A [2,0]-category is a category C together with a functorial binary operation \otimes that is associative up to natural isomorphism

$$\alpha_{ABC}: (A \otimes B) \otimes C \xrightarrow{\cong} A \otimes (B \otimes C),$$

and a unit I that is an identity for \otimes up to natural isomorphisms.



Enriched algebraic theories

Category-enriched categories

Ordinary category C: objects ob(C), hom-sets C(A, B). 2-category C: objects ob(C), hom-categories C(A, B).

Algebraic theory enriched in categories

A theory is a small 2-category $\mathcal T$ equipped with finite products.

Algebra for a theory ${\mathcal T}$

A \mathcal{T} -algebra is a 2-functor $\mathcal{T} \to \text{Cat}$ that preserves finite products. Natural transformations correspond to homomorphisms between \mathcal{T} -algebras. The 2-category of all \mathcal{T} -algebras is denoted by $\text{Alg}(\mathcal{T})$.

イロト イポト イヨト イヨト

2-dimensional identities

What are identities?

We do not want to specify identities of the form

$$(A \otimes B) \otimes C = A \otimes (B \otimes C).$$

We are interested in identities between rewrite "strategies", e.g.

$$((A \otimes B) \otimes C) \underbrace{\otimes D \quad \| \quad A \otimes}_{\otimes} (B \otimes (C \otimes D))$$

There are two ways to use the "associator" rewrite rule. The identity is one of the axioms of a monoidal category.

(4) (5) (4) (5) (4)

2-dimensional HSP theorem

Problem

Characterise equational subcategories

 $\mathcal{A} \longrightarrow \operatorname{Alg}(\mathcal{T}),$

where identities glue rewrite strategies together (not terms).

Result (MD, published 2016)

The equational subcategories of $\mathrm{Alg}(\mathcal{T})$ are precisely the subcategories that are closed in $\mathrm{Alg}(\mathcal{T})$ under HSP and "directed unions".

The proof heavily depends on the results of (Bourke, Garner 2014) concerning 2-dimensional factorisation systems and exactness.

References

- MD: A 2-dimensional Birkhoff's theorem, Theory Appl. Categ. (2016)
- Adámek, Rosický, Vitale: Algebraic theories, Cambridge Tracts in Mathematics 184 (2011)
- Birkhoff: On the structure of abstract algebras, 1935
- Bourke, Garner: Two-dimensional regularity and exactness, J. Pure Appl. Algebra 218 (2014), 1346-1371

・ 同 ト ・ ヨ ト ・ ヨ ト