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Universal algebra

Universal algebra is the study of algebraic structures.
(Birkhoff, 1935)

Algebras in “ordinary” universal algebra are sets equipped
with operations satisfying some axioms (identities).

Example — monoids

A monoid (M, ∗, e) is a set M together with a binary operation ∗
and a nullary operation e, satisfying the identities

(x ∗ y) ∗ z = x ∗ (y ∗ z),

e ∗ x = x ∗ e = x .
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Commutative monoids

The inclusion CommMon ↪→ Mon is given by the additional
identity x ∗ y = y ∗ x .

Equational subcategories of Alg(T )

Let Alg(T ) denote algebras for a theory T .

A ↪−−−−−−→ Alg(T )

Every equational subcategory A of Alg(T ) is closed in Alg(T )
under products, subalgebras, and quotient algebras (HSP).

Birkhoff’s HSP theorem

The converse of the above proposition is true; we can detect
equational subcategories by their closure properties.
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Usage of Birkhoff’s theorem

A = Modular lattices

Lattices satisfying the implication

x ≤ b implies x ∨ (a ∧ b) = (x ∨ a) ∧ b

closed under H, S and P: axiomatisable by identities.

A = Integral domains

Nonzero commutative rings satisfying

x ∗ y = 0 implies x = 0 or y = 0

not closed under HSP: cannot be axiomatised by identities.
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Categories with structure

There are important examples of categories equipped with
algebraic structure. Basic example: (Set,×, 1).

[2, 0]-categories

A [2, 0]-category is a category C together with a functorial binary
operation ⊗ that is associative up to natural isomorphism

αABC : (A⊗ B)⊗ C
∼=−→ A⊗ (B ⊗ C ),

and a unit I that is an identity for ⊗ up to natural isomorphisms.
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Categorical universal algebra

Categorical universal algebra employs category theory in the
study of algebra.

Basic notion on the level of syntax: algebraic theory.
(Lawvere, 1963)

Algebraic theory

A theory is a small category T equipped with some limit structure
(e.g. finite products). Corresponds to abstract clones in UA.

Algebra for a theory T
A T -algebra is a functor T → Set that preserves the limit structure
of T . Natural transformations correspond to homomorphisms
between T -algebras. The category of all T -algebras is denoted by
Alg(T ).
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Many-sorted algebras

Slight generalisation: many-sorted algebras. (Birkhoff, 1970)

Algebras have an underlying set for each specified sort, the
operations are sorted.

Example – directed graphs

A directed graph (E ,V , s, t) is a set E of the edge sort, a set V of
the vertex sort, and two unary operations

s : E → V ,

t : E → V ,

representing the source and target maps.
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Examples of algebraic theories

Directed graphs — empty limit structure

e v
s

t

EA VA

sA

tA

Contains only unary operations: no need for products.

Monoids — finite product structure

g × g
∗−−−→ g G × G

∗−−−→ G

All the derived operations are present in the theory.
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Categories with structure

There are important examples of categories equipped with
algebraic structure. Recall: (Set,×, 1).

[2, 0]-categories

A [2, 0]-category is a category C together with a functorial binary
operation ⊗ that is associative up to natural isomorphism

αABC : (A⊗ B)⊗ C
∼=−→ A⊗ (B ⊗ C ),

and a unit I that is an identity for ⊗ up to natural isomorphisms.

m ×m ×m m

⇒

α

(x ⊗ y)⊗ z

x ⊗ (y ⊗ z)
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Enriched algebraic theories

Category-enriched categories

Ordinary category C: objects ob(C), hom-sets C(A,B).
2-category C: objects ob(C), hom-categories C(A,B).

Algebraic theory enriched in categories

A theory is a small 2-category T equipped with finite products.

Algebra for a theory T
A T -algebra is a 2-functor T → Cat that preserves finite products.
Natural transformations correspond to homomorphisms between
T -algebras. The 2-category of all T -algebras is denoted by Alg(T ).
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2-dimensional identities

What are identities?

We do not want to specify identities of the form

(A⊗ B)⊗ C = A⊗ (B ⊗ C ).

We are interested in identities between rewrite “strategies”, e.g.

((A⊗ B)⊗ C )⊗ D A⊗ (B ⊗ (C ⊗ D))
=

There are two ways to use the “associator” rewrite rule. The
identity is one of the axioms of a monoidal category.
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2-dimensional HSP theorem

Problem

Characterise equational subcategories

A ↪−−−−−−→ Alg(T ),

where identities glue rewrite strategies together (not terms).

Result (MD, published 2016)

The equational subcategories of Alg(T ) are precisely the
subcategories that are closed in Alg(T ) under HSP and “directed
unions”.

The proof heavily depends on the results of (Bourke, Garner 2014)
concerning 2-dimensional factorisation systems and exactness.
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